Abstract
AbstractBased on radial velocity data and Hipparcos proper motions, we present a new determination of the Galactocentric distance based on a purely kinematic model. We have selected three subgroups of Galactic thin-disk components (O–B5 stars, classical Cepheids and Galactic open clusters) to trace the local structure and kinematics of the Galactic disk. Adopting the approximation of axisymmetric circular rotation, we have derived the Sun's distance to the Galactic Center, R0 = 8.25 ± 0.79 kpc based on O–B5 stars, R0 = 7.98 ± 0.79 kpc based on Galactic Cepheids and R0 = 8.03 ± 0.70 kpc using open clusters, all of which are in excellent agreement with the current-best estimate of the Galactocentric distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.