Abstract

Low temperatures can inhibit plant growth and development and reduce fruit yield. This study demonstrated that the expression of AnGolS1 from Ammopiptanthus nanus (A. nanus) encoding a galactinol synthase enhanced tomato cold tolerance. In AnGolS1-overexpressing plants, the jasmonic acid (JA) biosynthesis substrates 13-hydroperoxylinolenicacid and 12,13-epoxylinolenicacid were significantly accumulated, and the expression levels of the ethylene response factor (SlERF4-7) and serine protease inhibitor (SlSPI5) were increased. We speculated that there may be correlations among galactinol, ethylene signaling, the protease inhibitor, protease, and JA levels. The expression levels of SlERF4-7 and SlSPI5 as well as the JA content were significantly increased under exogenous galactinol treatment. Additionally, the expression of SlSPI5 was reduced in SlERF4-7-silenced plants, and SlERF4-7 was confirmed to bind to the dehydration-responsive element (DRE) of the SlSPI5 promoter. These results suggest that SlSPI5 is a target gene of the SlERF4-7 transcription factor. In addition, SlSPI5 interacted with cysteine protease (SlCPase), while SlCPase interacted with lipoxygenase (SlLOX5) and allene oxide synthase (SlAOS2). When SlCPase was silenced, JA levels increased and plant cold tolerance was enhanced. Therefore, galactinol regulates JA biosynthesis to enhance tomato cold tolerance through the SlERF4-7-SlSPI5-SlCPase-SlLOX5/SlAOS2 model. Overall, our study provides new perspectives on the role of galactinol in the JA regulatory network in plant adaptation to low-temperature stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.