Abstract

Bertrand space-times (BSTs) are static, spherically symmetric solutions of Einstein's equations, that admit stable, closed orbits. Starting from the fact that to a good approximation, stars in the disc or halo regions of typical galaxies move in such orbits, we propose that, under certain physical assumptions, the dark matter distribution of some low surface brightness (LSB) galaxies can seed a particular class of BSTs. In the Newtonian limit, it is shown that for flat rotation curves, our proposal leads to an analytic prediction of the NFW dark matter profile. We further show that the dark matter distribution that seeds the BST, is described by a two-fluid anisotropic model, and present its analytic solution. A new solution of the Einstein's equations, with an internal BST and an external Schwarzschild metric, is also constructed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.