Abstract

We apply a previously developed procedure to characterize galactic cosmic rays (GCRs) at 0.7 A.U. with engineering data coming from the Venus Express mission. The engineering parameters are the Error Detection and Correction EDAC cumulative counters, used for detection and correction of memory errors induced by highly energetic particles. It has already been demonstrated that the slope of this counter measures GCR fluxes using data from Mars Express (1.5 A.U.) and Rosetta (up to 4 A.U.) data. Here, we reproduce these methods using Venus Express EDAC data in order to understand the behavior of GCRs closer to the Sun. We again witness the anti-correlation of EDAC slope with the solar activity and further investigate this procedure. The resulting time-lag between maximum sunspot number and minimum GCRs intensity at Venus is close to one day instead of the expected several months. This work represents one of the first characterization of galactic cosmic rays at small distances to the Sun over a long period of time and further cements the value of using EDAC counters as scientific information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call