Abstract

The electromagnetic and particle cascade resulting from the absorption of galactic cosmic rays in the atmosphere of Titan is shown to be an important mechanism for driving the photochemistry at pressures of 1 to 50 mbar in the atmosphere. In particular, the cosmic ray cascade dissociates N 2, a process necessary for the synthesis of nitrogen organics such as HCN. The important interactions of the cosmic ray cascade with the atmosphere are discussed. The N 2 excitation and dissociation rates and the ionization rates of the principal atmospheric constituents are computed for a Titan model atmosphere that is consistent with Voyager 1 observations. It is suggested that HCN may be formed efficiently in the lower atmosphere through the photodissociation of methylamine. It is also argued that models of nitrogen and hydrocarbon photochemistry in the lower atmosphere of Titan should include the absorption of galactic cosmic rays as an important energy source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.