Abstract
Gait variability in the context of a deterministic dynamical system may be quantified using nonlinear time series analyses that characterize the complexity of the system. Pathological gait exhibits altered gait variability. It can be either too periodic and predictable, or too random and disordered, as is the case with aging. While gait therapies often focus on restoration of linear measures such as gait speed or stride length, we propose that the goal of gait therapy should be to restore optimal gait variability, which exhibits chaotic fluctuations and is the balance between predictability and complexity. In this context, our purpose was to investigate how listening to different auditory stimuli affects gait variability. Twenty-seven young and 27 elderly subjects walked on a treadmill for 5 min while listening to white noise, a chaotic rhythm, a metronome, and with no auditory stimulus. Stride length, step width, and stride intervals were calculated for all conditions. Detrended Fluctuation Analysis was then performed on these time series. A quadratic trend analysis determined that an idealized inverted-U shape described the relationship between gait variability and the structure of the auditory stimuli for the elderly group, but not for the young group. This proof-of-concept study shows that the gait of older adults may be manipulated using auditory stimuli. Future work will investigate which structures of auditory stimuli lead to improvements in functional status in older adults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.