Abstract

The pattern-generator-based approach for legged robot control is inspired by biological neural mechanisms of locomotion, in which a special challenge is gait transition. In this paper we build a holosymmetric central pattern generator model and propose parameter-setting principles for a gait matrix capable of producing typical quadrupedal gaits, and based on them present an approach of directly replacing the gait matrix for gait transition, with a focus on three problems emerging during transition: breakpoint, phase-lock and oscillation-stop. Breakpoints are smoothed by remaining the current outputs during transition, similar to a zero-order holder. Breaking the phase-lock is accomplished by adding a perturbation to the state matrix at the transiting point. An oscillation-stop of less than one period can be ignored. With such treatments, it is proved that gait transitions between any two gaits on a quadrupedal robot can be achieved at arbitrary phase locations in a walk cycle, theoretically and experimentally in part.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call