Abstract

Walking workstations may counteract sedentarism in working adults; however, performing dual-task walking may affect gait or work performance. The purpose of this study was to examine gait symmetry parameters and work performance while completing a fine motor dexterity task during walking workstation use. Gait function, quantified as gait symmetry, was used to identify attentional resource allocation of the co-occurring tasks during the dual-task conditions. Eighteen college-aged students performed the Purdue Pegboard Test (PPT) with left and right hands separately while using a walking workstation at a self-selected speed. Gait symmetry indices were computed on stride length and lower extremity angular joint positions and were analyzed for a comparison of the baseline and PPT dual-task conditions. No asymmetries were found in stride length or lower extremity angular joint positions at any sub-phase of gait during walking workstation use. PPT scores decreased significantly in the walking condition compared to the seated and standing conditions. Overall, gait symmetry did not change at any lower extremity angular joint position at any sub-phase; however, there was a decrease in PPT performance, which may relate to decreased work performance. However, increased exposure to the PPT task while using a walking workstation may improve work performance over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.