Abstract

The rat sciatic nerve is a well-established animal model for the study of peripheral crush injury. Footprint analysis is the most widely used non- invasive method of measuring functional recovery after injury in this model. However, this method has significant limitations due to inability to obtain clear reproducible prints, especially when the injury is severe, and variation of these prints with gait velocity. In the case of contracture or toe loss, footprint analysis is unreliable. We describe a new technique, gait -stance duration, which is capable of non-invasively quantitating functional recovery in the rat model. This method is not dependent on accurate foot positioning during gait. It utilizes video recording of the animal walking and measures the time each hind foot is in contact with the floor by counting the number of frames that pass. By pairing consecutive steps, it minimizes variation due to changes in velocity and, by calculating a ratio of injured/ uninjured hind feet, comparisons to normal gait can be made. This method shows recovery patterns similar to footprint analysis with small inter-animal variability. We believe it has significant advantages over footprint analysis for the measurement of functional recovery in the crushed sciatic nerve rat model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call