Abstract

Electromechanically-assisted gait training has been introduced in stroke rehabilitation as a means to enable gait training with a large number of reproducible and symmetrical task repetitions, i.e. steps. However, few studies have evaluated its impact on gait pattern functions. This study includes persons with no independent ambulation function at the start of a 4-week neurorehabilitation period in the sub-acute phase after stroke. The primary aim of the study was to evaluate whether the addition of electromechanically-assisted gait training to conventional training resulted in better gait pattern function than conventional training alone. The secondary aim was to identify correlations between overall gait quality and standardized clinical assessments. Seventeen patients with no independent ambulation function who participated in a Prospective Randomized Open Blinded End-point study in the sub-acute phase after stroke were randomized into two groups; one group (n = 7) to undergo conventional training only (CONV group) and the other group (n = 10) to undergo conventional training with additional electromechanically-assisted gait training (HAL group). All patients were assessed with 3D gait analysis and clinical assessments after the 4-week intervention period. Overall gait quality as per the Gait Profile Score (GPS), as well as kinematic, and kinetic and other spatiotemporal metrics were collected and compared between intervention groups. Correlations between biomechanical and clinical outcomes were evaluated. Both the CONV and HAL groups exhibited similar gait patterns with no significant differences between groups in any kinematic, kinetic parameters or other spatiotemporal metrics. The GPS for the paretic limb had a median (IQR) of 12.9° (7.8°) and 13.4° (4.3°) for the CONV and HAL groups, respectively (p = 0.887). Overall gait quality was correlated with independence in walking, walking speed, movement function and balance. We found no added benefit in gait pattern function from the electromechanically-assisted gait training compared to the conventional training alone. This finding raises new questions about how to best design effective and optimal post-stroke rehabilitation programs in patients with moderate to severe gait impairments to achieve both independent walking and optimal gait pattern function, and about which patients should be in focus in further studies on the efficacy of electromechanically-assisted gait training. The study was retrospectively registered at ClinicalTrials.gov, identifier (NCT02410915) on April 2015.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call