Abstract

BackgroundExercise-induced pain flares represent a significant barrier for individuals with knee osteoarthritis to meet physical activity recommendations. There is a need to understand factors that contribute to pain flares and the potential for the motor system to adapt and reduce joint loading should a flare occur. The study aim was to examine the impact of a bout of exercise on self-reported pain, walking mechanics and muscle co-contraction for participants with knee osteoarthritis.MethodsThirty-six adults (17 healthy older and 19 knee osteoarthritis) participated in this study. Self-reported pain, joint mechanics and muscle co-activation during gait at two self-selected speeds were collected before and after a 20-min preferred pace treadmill walk (20MTW).ResultsEight of nineteen osteoarthritis participants had a clinically significant pain flare response to the 20MTW. At baseline the participants that did not experience a pain flare had smaller knee flexion and total reaction moments compared to both the participants with pain flares (p = 0.02; p = 0.05) and controls (p < 0.001; p < 0.001). In addition, the 2nd peak knee adduction (p = 0.01) and internal rotation (p = 0.001) moments were smaller in the no flares as compared to controls. The pain flare participants differed from controls with smaller knee internal rotation moments (p = 0.03), but greater relative hamstrings (vs. quadriceps) and medial (vs. lateral) muscle activation (p = 0.04, p = 0.04) compared to both controls and no flare participants (p = 0.04, p = 0.007). Following the 20MTW there were greater decreases in the 1st and 2nd peak knee adduction (p = 0.03; p = 0.02), and internal rotation (p = 0.002) moments for the pain flare as compared to the no flare group. In addition, for the pain flare as compared to controls, greater decreases in the knee flexion (p = 0.03) and internal rotation (p = 0.005) moments were found.ConclusionsIndividuals who adapt their gait to reduce knee joint loads may be less susceptible to exercise-induced pain flares. This highlights a potential role of gait biomechanics in short-term osteoarthritis pain fluctuations. The results also suggest that despite the chronic nature of osteoarthritis pain, the motor system’s ability to respond to nociceptive stimuli remains intact.

Highlights

  • Exercise-induced pain flares represent a significant barrier for individuals with knee osteoarthritis to meet physical activity recommendations

  • When peak knee moments are reduced using shoe interventions, clinically relevant reductions in chronic joint pain have been reported [15]. Together these studies suggest that variations in gait mechanics, in particular the external knee flexion and adduction moments, can alter the pain experienced in knee OA, whether greater moments might contribute to pain flares during exercise is not clear

  • The pain flare group walked with a slower cadence, and a more internally rotated femur relative to the tibia compared to both the no flare and controls

Read more

Summary

Introduction

Exercise-induced pain flares represent a significant barrier for individuals with knee osteoarthritis to meet physical activity recommendations. Within and between person variations in gait mechanics can alter muscle, external and soft tissue forces in the knee and may change the mechanical stimuli in joint tissue that would contribute to pain [10]. When peak knee moments are reduced using shoe interventions, clinically relevant reductions in chronic joint pain have been reported [15]. Together these studies suggest that variations in gait mechanics, in particular the external knee flexion and adduction moments, can alter the pain experienced in knee OA, whether greater moments might contribute to pain flares during exercise is not clear

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call