Abstract

Aberrant walking biomechanics after anterior cruciate ligament reconstruction (ACLR) are hypothesized to be associated with deleterious changes in knee cartilage. T1ρ magnetic resonance imaging (MRI) is sensitive to decreased proteoglycan density of cartilage. Our purpose was to determine associations between T1ρ MRI interlimb ratios (ILR) and walking biomechanics 6 months after ACLR. Walking biomechanics (peak vertical ground reaction force (vGRF), vGRF loading rate, knee extension moment, knee abduction moment) were extracted from the first 50% of stance phase in 29 individuals with unilateral ACLR. T1ρ MRI ILR (ACLR limb/uninjured limb) was calculated for regions of interest in both medial and lateral femoral (LFC) and medial and lateral tibial condyles. Separate, stepwise linear regressions were used to determine associations between biomechanical outcomes and T1ρ MRI ILR after accounting for walking speed and meniscal/chondral injury (P ≤ 0.05). Lesser peak vGRF in the ACLR limb was associated with greater T1ρ MRI ILR for the LFC (posterior ΔR = 0.14, P = 0.05; central ΔR = 0.15, P = 0.05) and medial femoral condyle (central ΔR = 0.24, P = 0.01). Lesser peak vGRF loading rate in the ACLR limb (ΔR = 0.21, P = 0.02) and the uninjured limb (ΔR = 0.27, P = 0.01) was associated with greater T1ρ MRI ILR for the anterior LFC. Lesser knee abduction moment for the injured limb was associated with greater T1ρ MRI ILR for the anterior LFC (ΔR = 0.16, P = 0.04) as well as the posterior medial tibial condyle (ΔR = 0.13, P = 0.04). Associations between outcomes related to lesser mechanical loading during walking and greater T1ρ MRI ILR were found 6 months after ACLR. Although preliminary, our results suggest that underloading of the ACLR limb at 6 months after ACLR may be associated with lesser proteoglycan density in the ACLR limb compared with the uninjured limb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.