Abstract

The availability of proper tests for gait evaluation following cerebral ischemia in rats has been limited. The automated, quantitative CatWalk system, which was initially designed to measure gait in models of spinal cord injury, neuropathic pain, and peripheral nerve injury, is said to be a useful tool for the study of motor impairment in stroke animals. Here we report our experiences of using CatWalk XT with rats subjected to transient middle cerebral artery occlusion (MCAO), during their six-week followup. Large corticostriatal infarct was confirmed by MRI in all MCAO rats, which was associated with severe sensorimotor impairment. In contrast, the gait impairment was at most mild, which is consistent with seemingly normal locomotion of MCAO rats. Many of the gait parameters were affected by body weight, walking speed, and motivation despite the use of a goal box. In addition, MCAO rats showed bilateral compensation, which was developed to stabilize proper locomotion. All of these interferences may confound the data interpretation. Taken together, the translational applicability of CatWalk XT in evaluating motor impairment and treatment efficacy remains to be limited at least in rats with severe corticostriatal infarct and loss of body weight.

Highlights

  • Stroke imposes an enormous economic and human burden

  • Transient middle cerebral artery occlusion (MCAO) resulted in variable cortical infarction and included most of the parietal sensorimotor cortex

  • As we found that the run speed slightly decreased and stance duration increased in MCAO animals, the total run duration was significantly longer, and the swing speed was greater for all four paws of MCAO rats (Table 1)

Read more

Summary

Introduction

Stroke imposes an enormous economic and human burden. Despite some spontaneous recovery observed during the first 3 months, around half of stroke patients are left with permanent disability, in which upper extremity motor impairment is the most prominent. Versatile analysis of gait and ambulation has been limited in stroke animals until the CatWalk system was recently introduced as an automated and quantitative gait analysis tool It is based on video analysis of light reflected by the paws as they contact the glass floor. This represents a rapid way to objectively quantify several gait parameters such as position, pressure and surface area of each paw, which are used to calculate spatial paw statistics, the relative positions between paws, temporal parameters of gait, and interlimb coordination. This system has clinical relevance because the principle is very similar to the GAITRite system that can assess gait in stroke patients [1]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call