Abstract

SUMMARYThis paper proposes a repetitive control type optimal gait generation framework by executing learning control and parameter tuning. We propose a learning optimal control method of Hamiltonian systems unifying iterative learning control (ILC) and iterative feedback tuning (IFT). It allows one to simultaneously obtain an optimal feedforward input and tuning parameter for a plant system, which minimizes a given cost function. In the proposed method, a virtual constraint by a potential energy prevents a biped robot from falling. The strength of the constraint is automatically mitigated by the IFT part of the proposed method, according to the progress of trajectory learning by the ILC part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.