Abstract

Elderly gait is a source of rich information about their physical and mental health condition. As an alternative to the multiple sensors on the lower body parts, a single sensor on the pelvis has a positional advantage and an abundance of information acquirable. This study aimed to improve the accuracy of gait event detection in the elderly using a single sensor on the waist and deep learning models. Data were gathered from elderly subjects equipped with three IMU sensors while they walked. The input taken only from the waist sensor was used to train 16 deep-learning models including a CNN, RNN, and CNN-RNN hybrid with or without the Bidirectional and Attention mechanism. The groundtruth was extracted from foot IMU sensors. A fairly high accuracy of 99.73% and 93.89% was achieved by the CNN-BiGRU-Att model at the tolerance window of ±6 TS (±6 ms) and ±1 TS (±1 ms), respectively. Advancing from the previous studies exploring gait event detection, the model demonstrated a great improvement in terms of its prediction error having an MAE of 6.239 ms and 5.24 ms for HS and TO events, respectively, at the tolerance window of ±1 TS. The results demonstrated that the use of CNN-RNN hybrid models with Attention and Bidirectional mechanisms is promising for accurate gait event detection using a single waist sensor. The study can contribute to reducing the burden of gait detection and increase its applicability in future wearable devices that can be used for remote health monitoring (RHM) or diagnosis based thereon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.