Abstract
We propose a fuss-free gait analyzer based on a single three-axis accelerometer mounted on a cell phone for health care and presence services. It is not necessary for users not to wear sensors on any part of their bodies; all they need to do is to carry the cell phone. Our algorithm has two main functions; one is to extract feature vectors by analyzing sensor data in detail using wavelet packet decomposition. The other is to flexibly cluster personal gaits by combining a self-organizing algorithm with Bayesian theory. Not only does the three-axis accelerometer realize low cost personal devices, but we can track aging or situation changes through on-line learning. A prototype that implements the algorithm is constructed. Experiments on the prototype show that the algorithm can identify gaits such as walking, running, going up/down stairs, and walking fast with an accuracy of about 80%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.