Abstract

The use of inverse dynamics methodologies for the evaluation of intersegmental reaction forces and the moments-of-force at the anatomical joints, in the framework of gait analysis, not only requires that appropriate biomechanical models are used but also that kinematic and kinetic data sets are available. This paper discusses the quality of the results of the inverse dynamics analysis with respect to the filtering procedures used and the kinematic consistency of the position, velocity and acceleration data. A three-dimensional whole body response biomechanical model based on a multibody formulation with natural coordinates is used. The model has 16 anatomical segments that are described using 33 rigid bodies in a total of 44 degrees-of-freedom. In biomechanical applications, one of the advantages of the current formulation is that the set of anatomical points used to reconstruct the spatial motion of the subject is also used to construct the set of natural coordinates that describe the biomechanical model itself. Based on the images collected by four synchronized video cameras, the three-dimensional trajectories of the anatomical points are reconstructed using standard photogrammetry techniques and Direct Linear Transformations. The trajectories obtained are then filtered in order to reduce the noise levels introduced during the reconstruction procedure using 2nd order Butterworth low-pass filters with properly chosen cut-off frequencies. The filtered data is used in the inverse dynamics analysis either directly or after being modified in order to ensure its consistency with the biomechanical model’s kinematic constraints. It is also shown that the use of velocities and accelerations consistent with the kinematic constraints or those obtained through the time derivatives of the spline interpolation curves of the reconstructed trajectories lead to similar results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call