Abstract

In this paper, we present a gain-scheduling distributed model predictive control (MPC) algorithm for polytopic uncertain systems subject to actuator saturation. A large-scale system is decomposed into subsystems and sub-controllers are designed independently. An invariant set condition is provided and a min-max distributed MPC strategy is proposed based on the invariant set. The distributed MPC controller is determined by solving a linear matrix inequality (LMI) optimization problem. An iterative algorithm is provided to coordinate the sub-controllers. A numerical example is carried out to demonstrate the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.