Abstract

This paper studies bandwidth selection for kernel estimation of derivatives of multidimensional conditional densities, a non-parametric realm unexplored in the literature. This paper extends Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014] in its examination of conditional multivariate densities, derives and presents criteria for arbitrary kernel order and density dimension, shows consistency of the estimators, and investigates a minimization criterion which jointly estimates numerator and denominator bandwidths. I conduct a Monte Carlo simulation study for various orders of kernels in the Gaussian family and compare the new cross validation criterion with those implied by Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014]. The paper finds that higher order kernels become increasingly important as the dimension of the distribution increases. I find that the cross validation criterion developed in this paper that jointly estimates the derivative of the joint density (numerator) and the marginal density (denominator) does orders of magnitude better than criteria that estimate the bandwidths separately. I further find that using the infinite order Dirichlet kernel tends to have the best results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.