Abstract

The pharmacological profiles of small molecule drugs are often challenged by their poor water solubility. Sequence-defined peptides attached to poly(ethylene glycol) (PEG) offer opportunities to overcome these difficulties by acting as drug-specific formulation additives. The peptide-PEG conjugates enable specific, noncovalent drug binding via tailored peptide/drug interactions as well as provide water solubility and drug shielding by well-solvated PEG-blocks. A systematic set of specific solubilizers for B4A1 as a potential anti-Alzheimer disease drug is synthesized and variations involve the length of the PEG-blocks as well as the sequences of the peptidic drug-binding domain. The solubilizer/B4A1 complexes are studied in order to understand contributions of both PEG and peptide segments on drug payload capacities, drug/carrier aggregate sizes, and influences on inhibition of the Tau-protein aggregation in an in vitro assay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call