Abstract

Clay minerals belong to a wider class of solids known as layered materials, which may be defined as ‘crystalline materials wherein the atoms in the layers are cross-linked by chemical bonds, while the atoms of adjacent layers interact by physical forces’ [1]. Both clay sheets and interlayer space have one dimension in the nanometre range. Cationic clays are the predominant naturally occurring minerals with aluminosilicate sheets carrying a negative charge. Therefore, the interlayer guest species are positively charged to compensate the layer charge [2]. In anionic clays, also known as layered double hydroxides (LDHs), the interlayer guest species carry a negative charge and the inorganic mixed metal hydroxide sheets are positively charged. In recent times, there has been a growing interest in anionic clays, although initial attention was focussed almost exclusively on the cationic clay materials. Reviews have appeared that often emphasise interesting properties and the use of experimental techniques to determine or at least infer the local structure of the clay sheet or intercalated material [3–5]. However, clays are polycrystalline materials and precise experimental location of interlayer species is extremely difficult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.