Abstract
The application of single-molecule spectroscopic methods in studies of individual nanoscale environments within sol-gel-derived silicate thin films is reviewed. Representative examples of the experiments performed and results obtained in several studies from the authors' laboratories are given. Included are investigations of the static and dynamic polarity properties of organically modified silicate (ORMOSIL) films. The results of these studies point to nonrandom variations in the film properties, providing strong evidence for the formation of phase-separated organic- and inorganic-rich domains. Studies of single-molecule diffusion through the same films yield important evidence for the formation of liquidlike silicate oligomers that facilitate probe molecule diffusion. Finally, single-molecule studies of the local pH within individual film environments are discussed. Valuable information on the contributions of local materials' acidity variations to overall sample heterogeneity is obtained. The results of immersion studies indicate that certain molecular environments are inaccessible to external solutions over periods as long as a few hours. The article concludes with a discussion of possible future challenges in this research that may be addressed by new and existing single-molecule methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.