Abstract

Electrocatalysis for CO2 conversion has been extensively studied to mitigate the energy shortage and environmental issues, which are gaining ever-increasing attention. However, the complicated CO2 reduction process and the dynamic evolution occurring on electrocatalyst surface make it hard to understand the catalytic mechanism. The development of advanced in situ/operando techniques intelligently coupled with electrochemical cells sheds light on the related study via capturing surface atomic rearrangement, tracing chemical state change of catalysts, monitoring the behavior of intermediates and products, and depicting microenvironment near the electrode surface. In this review, fundamentals of the state-of-the-art in situ/operando techniques are clarified first. Case studies on the in situ/operando techniques performed to probe the CO2 reduction reaction processes are then discussed in detail. Finally, conclusions and outlook on this field are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call