Abstract

This paper investigates the dynamic behavior of a thulium doped fiber amplifier (TDFA) operating in the 2µm region for reconfigurable wavelength division multiplexing (WDM) systems. We show deleterious channel power fluctuations may be generated by input power variation at the amplifier and we propose the use of an optical gain-clamping technique. The investigated system consists of 20 channels with −4dBm total input power. Our findings revealed that the effects of power transients due to channel reconfigurations are significantly reduced by a lasing feedback signal. Simulation results show that a power excursion of 4.3dB is produced after dropping 19 channels when the amplifier gain is unclamped and only 0.0062dB when the amplifier gain is clamped. The dynamics of GC-TDFA are mainly influenced by the value of the pump power factor and thus the laser signal achieves a stronger stabilization condition with increasing pump power factor. Hence, optical gain clamping is a simple and robust technique to control the power transient in the thulium-doped fiber amplifier of WDM systems at 2µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.