Abstract

Aurora A is a mitotic serine/threonine kinase protein that is a proposed target of the first-line anticancer drug design. It has been found to be overexpressed in many human cancer cells, including hematological, breast, and colorectal. Here, we focus on a particular somatic mutant S155R of Aurora kinase A protein, whose activity decreases because of loss of interaction with a TPX2 protein that results in ectopic expression of the Aurora kinase A protein, which contributes chromosome instability, centrosome amplification, and oncogenic transformation. The primary target of this study is to select a drug molecule whose binding results in gaining S155R mutant interaction with TPX2. The computational methodology applied in this study involves mapping of hotspots (for uncompetitive binding), virtual screening, protein-ligand docking, postdocking optimization, and protein-protein docking approach. In this study, we screen and validate ZINC968264, which acts as a potential molecule that can improve the loss of function occurred because of mutation (S155R) in Aurora A. Our approaches pave a suitable path to design a potential drug against physiological condition manifested because of S155R mutant in Aurora A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call