Abstract

Adult T cell leukemia/lymphoma (ATLL) is an aggressive malignancy caused by human T cell lymphotropic virus type-I (HTLV-I) without curative treatment at present. To illuminate the pathogenesis of ATLL we performed whole transcriptome sequencing of purified ATLL patient samples and discovered recurrent somatic mutations in CCR4, encoding CC chemokine receptor 4. CCR4 mutations were detected in 14/53 ATLL samples (26%) and consisted exclusively of nonsense or frameshift mutations that truncated the coding region at C329, Q330, or Y331 in the carboxy terminus. Functionally, the CCR4-Q330 nonsense isoform was gain-of-function because it increased cell migration toward the CCR4 ligands CCL17 and CCL22, in part by impairing receptor internalization. This mutant enhanced PI(3) kinase/AKT activation after receptor engagement by CCL22 in ATLL cells and conferred a growth advantage in long-term in vitro cultures. These findings implicate somatic gain-of-function CCR4 mutations in the pathogenesis of ATLL and suggest that inhibition of CCR4 signaling might have therapeutic potential in this refractory malignancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.