Abstract

Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In sum, our findings indicate that the three nhr-49 gof alleles are non-equivalent, and highlight the conserved V411 residue affected by et13 as critical for gene activation and repression alike.

Highlights

  • Nuclear hormone receptors (NHRs) are transcription factors that modulate gene expression in response to extrinsic and intrinsic cues, and they are essential regulators of many developmental and physiological processes [1]

  • Svensk et al described three gain-of-function mutations in the nhr-49 gene, et7(P479L), et8(S432F), and et13(V411E) [25]

  • For et8(S432F), the mode of paqr-2 suppression has been described: this mutation causes the upregulation of the known NHR-49 regulated gene fat-7 and a concomitant increase in unsaturated fatty acid levels [25]

Read more

Summary

Introduction

Nuclear hormone receptors (NHRs) are transcription factors that modulate gene expression in response to extrinsic and intrinsic cues, and they are essential regulators of many developmental and physiological processes [1]. The evolutionarily more ancient nematode Caenorhabditis elegans encodes a massively expanded NHR family with 284 members, including 269 NHRs that appear to have derived from an HNF4α-like ancestor [9,10]. Most of these NHRs remain uncharacterized, but several appear to regulate metabolism. NHR-69 cooperates with Smadtype transcription factors to modulate glucose levels and insulin signaling [11], and NHR-8, -10, -13, -49, -62, -64, -66, -76, and -80 belong to an expanding group of NHRs that regulate lipid metabolism and/or metabolic gene expression [12,13,14,15,16,17,18,19,20,21,22]. HNF4-like NHRs regulate lipid metabolism in invertebrate and vertebrate organisms alike

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.