Abstract

A possible mechanism underlying adaptive control of the respiratory system is gain modulation of the discharge frequency (F(n)) patterns of medullary respiratory neurons mediated by GABA(A) receptors. Antagonism of GABA(A) receptors with bicuculline results in an F(n) pattern that is an amplified replica of the underlying control pattern. The contours of F(n) patterns remain proportional to one another. Studies suggest that a tonic GABA(A)ergic input constrains the control- and reflexly-induced activities of these neurons to about 35-50% of the discharge rate without this inhibitory input. The pharmacology of this mechanism is unusual in that picrotoxin, a noncompetitive GABA(A) receptor antagonist, does not produce gain modulation, but is able to block the silent phase inhibition (e.g. E phase of an I neuron). Alterations in the amplitude of spike afterhyperpolarizations mediated by Ca(2+) activated K(+) channels also produces gain modulation. This mechanism modulates exogenously- and endogenously-induced neuronal activities, whereas the bicuculline-sensitive GABAergic mechanism modulates only the respiratory-related activities. Thus, these two forms of gain modulation, acting in cascade manner, may provide robust mechanisms for the optimal control of respiratory, as well as other behavioral functions (e.g. coughing, sneezing, vomiting) mediated by respiratory premotor neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.