Abstract

A method for the measurement of the gain-reflectance product of Fabry-Pe/spl acute/rot (F-P) semiconductor lasers is proposed and compared to other techniques. The method is based on a nonlinear, least-squares fitting of the F-P modes to an Airy function. A separate fitting is performed over each mode, as measured with an optical spectrum analyzer (OSA), so that the gain-reflectance parameters are extracted. The influence of the OSAs response function is considered by convolution of the Airy function with the response function of the OSA. By comparing with the Hakki-Paoli method, the mode sum/min method, and the Fourier series expansion method, we find that the nonlinear fitting method is the least sensitive to noise. However, owing to a broadening of the F-P modes of the semiconductor laser, the mode sum/min method combined with a deconvolution technique gives the least underestimated gain above threshold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.