Abstract

Gene gain-loss-duplication models are commonly based on continuous-time birth–death processes. Employed in a phylogenetic context, such models have been increasingly popular in studies of gene content evolution across multiple genomes. While the applications are becoming more varied and demanding, bioinformatics methods for probabilistic inference on copy numbers (or integer-valued evolutionary characters, in general) are scarce.We describe a flexible probabilistic framework for phylogenetic gain-loss-duplication models. The framework is based on a novel elementary representation by dependent random variables with well-characterized conditional distributions: binomial, Pólya (negative binomial), and Poisson.The corresponding graphical model yields exact numerical procedures for computing the likelihood and the posterior distribution of ancestral copy numbers. The resulting algorithms take quadratic time in the total number of copies. In addition, we show how the likelihood gradient can be computed by a linear-time algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.