Abstract

Global food security is currently challenged and requires sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N) and increased protein self-sufficiency through home-grown crops. Such challenges were addressed in a continental-scale field experiment conducted over three years, in which the amount of total nitrogen yield (Ntot) and the gain in N yield in mixtures as compared to grass monocultures (Ngainmix) was quantified from four-species grass-legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2 fixing legumes and two non-fixing grasses.The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all three years. Ntot and thus Ngainmix increased with increasing legume proportion up to one third of legumes. With higher percentages of legumes, Ntot and Ngainmix did not further increase. Thus, across sites and years, mixtures with one third proportion of legumes had 57% higher Ntot than grass monocultures and attained ∼95% of the maximum Ntot acquired by any stand.The relative N gain in mixture (Ngainmix/Ntotmix) was most severely impaired by minimum site temperature (R = 0.64, P = 0.010). Nevertheless, Ngainmix/Ntotmix was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass-legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels.We conclude that higher N output (Ntot or forage protein per unit area) can be achieved with grass-legume mixtures than with pure grass alone for a given amount of N fertilizer applied; conversely, the same N output can be achieved by mixed swards with less input of N. Therefore, the use of grass-legume mixtures can substantially contribute to resource-efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and greenhouse gas emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.