Abstract
An active plasmonic slot waveguide comprising an inverted triangular metal wedge incorporated inside a V-shaped plasmonic groove with a low-index gain medium embedded between them is presented, and its guiding properties are investigated numerically at the wavelength of 1550nm. The presented waveguide is shown to be capable of supporting two fundamental plasmonic slot modes with high field localization to the V-shaped low-index slot region. Due to such strong optical confinement and significant field enhancement, the introduced gain in the slot could effectively compensate the propagation loss of the supported plasmonic modes. It is revealed that for the studied channel plasmonic slot and wedge plasmonic slot modes, notable gain enhancements are observable within a wide range of geometric parameters. For the considered structure with a 10–40nm-wide slot, the enhancements of gain can be as large as 11%–159% for the CPS mode while 43%–174% for the WPS mode. These values could be further improved by adopting even narrower slots. It is shown that, by introducing a gain medium with coefficients around hundreds of cm−1, the modal loss can be largely or even fully compensated, with a subwavelength mode area achievable simultaneously. These unique features of the studied V-shaped plasmonic slot waveguide might be useful for its potential applications in compact, active plasmonic components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.