Abstract

The maximum gain attainable from fast-ignited direct-drive implosions is derived based on realistic target designs and laser pulses, one-dimensional simulations of the implosion, and two-dimensional simulations of ignition by a collimated electron beam and burn propagation. Since the implosion characteristics are set by the optimized target design, the ratio of the thermonuclear energy to the compression laser energy is a unique function of the driver energy on target. It is shown that, if ignited, the fuel assembled by a 100-kJ UV laser can yield close to 6MJ of thermonuclear energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.