Abstract

Using a rigorous mode theory for gain-compensated plasmonic dimers, we demonstrate how quality factors and Purcell factors can be dramatically increased, improving the quality factors from 10 to over 26,000 and the peak Purcell factors from approximately 3000 to over 10 billion. Full three-dimensional calculations are presented for gold dimers in a finite-size gain medium, which allows one to easily surpass fundamental Purcell factor limits of lossy media. Within a regime of linear system response, we show how the Purcell factors are modified by the contributions from the projected local density of states as well as a non-local gain. Further, we show that the effective mode volume and radiative beta factors remain relatively constant, despite the significant enhancement of the Purcell factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.