Abstract

Single-photon-counting imaging technology has been widely used in ultraweak bioluminescence, space environment detection and nuclear radiation detection. The structure and working principle of an ultraviolet single photon imaging system based on the microchannel plates and the wedge and strip anode are introduced. The gain characteristic of dark count of two and three microchannel plates is investigated under different voltages respectively. The experimental and fitted results show that the dark count pulse height distribution of microchannel plate has exponential distribution, and the dark count rate rises as the voltage increases. It is shown that the gain becomes more homogeneous as the voltage increases by measuring the pulse height distribution under different voltages. Then the effects of microchannel plate voltage and distance on system resolution with two microchannel plates are tested. It is revealed that the system resolution rises as the voltage of microchannel plate increases, and can be improved also by increasing the distance of microchannel plate properly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.