Abstract

In radio telescope arrays, the complex receiver gains and sensor noise powers are initially unknown and have to be calibrated. Gain calibration can enhance the quality of astronomical sky images and, moreover, improve the effectiveness of array signal processing techniques for interference mitigation and spatial filtering. A challenging aspect is that the signal-to-noise ratio (SNR) is usually well below 0 dB, even for the brightest sky sources. The calibration method considered here consists of observing a single point source and extracting the gain and noise parameters from the estimated covariance matrix. We present several closed-form and iterative identification algorithms for this. Weighted versions of the algorithms are proven to be asymptotically efficient. The algorithms are validated by simulations and application to experimental data observed at the Westerbork Synthesis Radio Telescope (WSRT).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call