Abstract

The rate equations and the power evolution equations based on excited state absorption (ESA) and cooperative upconversion (CUC) of high concentration erbium-doped yttrium aluminum garnet (YAG) transparent ceramic waveguide amplifier are set up to analyze the effects of the pump power, active ion concentration and waveguide length on the amplifier gain and noise figure (NF). The numerical analysis predicts that with a pump power of 100mW, an active ion concentration of 1.0×1026 ion/m3 and a waveguide length of 3 cm, a small-signal gain of 30 dB and an NF of 5 dB can be achieved in the micro-chip amplifier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call