Abstract

BackgroundTwo key genes of the translational apparatus, elongation factor-1 alpha (EF-1α) and elongation factor-like (EFL) have an almost mutually exclusive distribution in eukaryotes. In the green plant lineage, the Chlorophyta encode EFL except Acetabularia where EF-1α is found, and the Streptophyta possess EF-1α except Mesostigma, which has EFL. These results raise questions about evolutionary patterns of gain and loss of EF-1α and EFL. A previous study launched the hypothesis that EF-1α was the primitive state and that EFL was gained once in the ancestor of the green plants, followed by differential loss of EF-1α or EFL in the principal clades of the Viridiplantae. In order to gain more insight in the distribution of EF-1α and EFL in green plants and test this hypothesis we screened the presence of the genes in a large sample of green algae and analyzed their gain-loss dynamics in a maximum likelihood framework using continuous-time Markov models.ResultsWithin the Chlorophyta, EF-1α is shown to be present in three ulvophycean orders (i.e., Dasycladales, Bryopsidales, Siphonocladales) and the genus Ignatius. Models describing gene gain-loss dynamics revealed that the presence of EF-1α, EFL or both genes along the backbone of the green plant phylogeny is highly uncertain due to sensitivity to branch lengths and lack of prior knowledge about ancestral states or rates of gene gain and loss. Model refinements based on insights gained from the EF-1α phylogeny reduce uncertainty but still imply several equally likely possibilities: a primitive EF-1α state with multiple independent EFL gains or coexistence of both genes in the ancestor of the Viridiplantae or Chlorophyta followed by differential loss of one or the other gene in the various lineages.ConclusionEF-1α is much more common among green algae than previously thought. The mutually exclusive distribution of EF-1α and EFL is confirmed in a large sample of green plants. Hypotheses about the gain-loss dynamics of elongation factor genes are hard to test analytically due to a relatively flat likelihood surface, even if prior knowledge is incorporated. Phylogenetic analysis of EFL genes indicates misinterpretations in the recent literature due to uncertainty regarding the root position.

Highlights

  • Two key genes of the translational apparatus, elongation factor-1 alpha (EF-1α) and elongation factor-like (EFL) have an almost mutually exclusive distribution in eukaryotes

  • Distribution of elongation factors in the green algae EF-1α sequences were retrieved from streptophytes Entransia (Klebsormidiophyceae) and Chlorokybus (Chlorokybophyceae), confirming previous observations that all Streptophyta except Mesostigma have EF-1α

  • We found EFL sequences in Chlorella (Trebouxiophyceae), Acrochaete and Bolbocoleon (Ulvophyceae), Nephroselmis and Tetraselmis striata, further confirming the formerly established distribution pattern within the Chlorophyta

Read more

Summary

Introduction

Two key genes of the translational apparatus, elongation factor-1 alpha (EF-1α) and elongation factor-like (EFL) have an almost mutually exclusive distribution in eukaryotes. In the green plant lineage, the Chlorophyta encode EFL except Acetabularia where EF-1α is found, and the Streptophyta possess EF-1α except Mesostigma, which has EFL. These results raise questions about evolutionary patterns of gain and loss of EF-1α and EFL. A gene related to but clearly distinguishable from EF-1α, called elongation factor-like (EFL), appears to substitute EF-1α in a scattered pattern: several unrelated eukaryote lineages have representatives that encode EFL and others that possess EF-1α. EFL has been reported in chromalveolates (Perkinsus, dinoflagellates, diatoms, haptophytes, cryptophytes), the plant lineage (green and red algae), rhizarians (cercozoans, foraminifera), unikonts (some Fungi and choanozoans) and centrohelids [8,10,12,13,14]]

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.