Abstract

This paper discusses the effects of gravitational waves on high-accuracy astrometric observations such as those delivered by Gaia. Depending on the frequency of gravitational waves, two regimes for the influence of gravitational waves on astrometric data are identified: the regime when the effects of gravitational waves directly influence the derived proper motions of astrometric sources and the regime when those effects mostly appear in the residuals of the standard astrometric solution. The paper is focused on the second regime while the known results for the first regime are briefly summarized.The deflection of light due to a plane gravitational wave is then discussed. Starting from a model for the deflection we derive the corresponding partial derivatives and summarize some ideas for the search strategy of such signals in high-accuracy astrometric data. In order to reduce the dimensionality of the parameter space the use of vector spherical harmonics is suggested and explained. The explicit formulas for the VSH expansion of the astrometric signal of a plain gravitational wave are derived.Finally, potential sensitivity of Gaia astrometric data is discussed. Potential astrophysical sources of gravitational waves that can be interesting for astrometric detection are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.