Abstract

In the new era of large-scale astronomical surveys, automated methods of analysis and classification of bulk data are a fundamental tool for fast and efficient production of deliverables. This becomes ever more imminent as we enter the Gaia era. We investigate the potential detectability of eclipsing binaries with Gaia using a data set of all Kepler eclipsing binaries sampled with Gaia cadence and folded with the Kepler period. The performance of fitting methods is evaluated with comparison to real Kepler data parameters and a classification scheme is proposed for the potentially detectable sources based on the geometry of the light curve fits. The polynomial chain (polyfit) and two-Gaussian models are used for light curve fitting of the data set. Classification is performed with a combination of the t-SNE (t-distrubuted Stochastic Neighbor Embedding) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithms. We find that approximately 68% of Kepler Eclipsing Binary sources are potentially detectable by Gaia when folded with the Kepler period and propose a classification scheme of the detectable sources based on the morphological type indicative of the light curve, with subclasses that reflect the properties of the fitted model (presence and visibility of eclipses, their width, depth, etc.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.