Abstract

ABSTRACT Although laboratory-adapted HIV-1 strains are largely resistant to the human restriction factor TRIM5α (hTRIM5α), we have recently shown that some viruses carrying capsid (CA) sequences from clinical isolates can be more sensitive to this restriction factor. In this study we evaluated the contribution to this phenotype of CA mutations known to be associated with escape from cytotoxic T lymphocyte (CTL) responses. Recombinant viruses carrying HIV-1 CA sequences from NL4-3 and three different clinical isolates were prepared, along with variants in which mutations associated with CTL resistance were modified by site-directed mutagenesis, and the infectivities of these viruses in target cells expressing hTRIM5α and cells in which TRIM5α activity had been inhibited by overexpression of TRIM5γ were compared. For both hTRIM5α-sensitive viruses studied, CTL-associated mutations were found to be responsible for this phenotype. Both CTL resistance mutations occurring within HLA-restricted CA epitopes and compensatory mutations occurring outside CTL epitopes influenced hTRIM5α sensitivity, and mutations associated with CTL resistance selected in prior hosts can contribute to this effect. The impact of CTL resistance mutations on hTRIM5α sensitivity was context dependent, because mutations shown to be responsible for the TRIM5α-sensitive phenotype in viruses from one patient could have little or no impact on this parameter when introduced into another virus. No fixed relationship between changes in hTRIM5α sensitivity and infectivity was discernible in our studies. Taken together, these findings suggest that CTL mutations may influence HIV-1 replication by modifying both viral infectivity and sensitivity to TRIM5α.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.