Abstract

Panchromatic (PAN) and multispectral (MS) images have coordinated and paired spatial spectral information, which can complement each other and make up for their shortcomings for image interpretation. In this article, a novel classification method called the deep group spatial-spectral attention fusion network is proposed for PAN and MS images. First, the MS image is processed by unpooling to obtain the same resolution as that of the PAN image. Second, the group spatial attention and group spectral attention modules are proposed to extract image features. The PAN and the processed MS images are regarded as the input of the two modules, respectively. Third, the features from the previous step are fused by the attention fusion module, which aims to fully fuse multilevel features, take into account both the low-level features and the high-level features, and maintain the global abstract and local detailed information of the pixels. Finally, the fusion feature is fed into the classifier and the resulting map is obtained by pixel level. Extensive experiments and analysis on four datasets show that the proposed method achieves comparable results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.