Abstract

ABSTRACTSubstrate preparation of GaN, both in-situ and ex-situ, and the growth of gadolinium oxide, Gd2O3, by Gas source molecular beam epitaxy (GSMBE) have been investigated. Ex-situ cleaning techniques included wet chemical etching and UV-ozone treatments to remove surface contaminants and the native oxide. In-situ cleaning consisted of thermal treatment with and without exposure to an electron cyclotron resonance (ECR) oxygen plasma. A GaN (1x3) streaky RHEED pattern was the final product of this surface treatment study. Various growth initiation techniques were explored to produce Gd2O3 films with different microstructures as evidenced by RHEED, TEM, and XRD. Gd2O3 films planarized the initial GaN surface and stoichiometry was maintained over a range of substrate temperatures (300° to 650°C). Single crystal gadolinium oxide films were grown at substrate temperatures of 600-650°C. These films exhibited a breakdown field strength (EBD) of ∼1MV/cm, and showed high leakage current at high forward bias due to defects within the oxide. Single crystal oxide films were found to be thermally stable at annealing temperatures up to 1000°C. Quasi-amorphous films were grown at a substrate temperature of 100°C. These films exhibited a higher E BD of ∼3MV/cm and an interface state density of 3 × 1011 cm−2eV−1. However, the quasi-amorphous films were not thermally stable at 1000°C, showing evidence of re-crystallization in x-ray diffraction (XRD) scans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call