Abstract
A computer study of the dose distribution for gadolinium neutron capture therapy is carried out to determine its feasibility. Gadolinium is a potential neutron capture therapy (NCT) agent that produces gamma radiation, conversion electrons, and Auger electrons. The dose distribution from neutrons, neutron-induced gammas, and the reaction products from neutron capture in gadolinium were modeled using the Los Alamos National Laboratory Monte Carlo neutron photon computer code. The results of these calculations are that gadolinium has promise as an NCT agent. Using two parallel opposed epithermal neutron beams for a tumor at an 8.0-cm depth with a gadolinium loading of 100 µg/g, the tumor to peak normal tissue dose was determined to be 1.48.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.