Abstract

Gadolinium neutron capture therapy (Gd-NCT) is an experimental cancer treatment based on the physical principal that neutron capture by gadolinium-157 ensures the release of focal high-dose radiation, such as gamma-rays and electrons. Survival and induction of chromosomal aberrations of human SW-1573 cells was studied after thermal neutron irradiation without and with gadolinium. After neutron irradiation with Gd-DTPA, an alpha-enhancement factor of 2.3 was obtained compared to thermal neutron irradiation alone. Gd-DTPA could not radioenhance the cells for gamma-ray irradiation. Induction of colour junctions and chromosome fragments by thermal neutron irradiation and Gd-NCT were studied using PCC-FISH. Correlations (r2-value) between survival and chromosome aberrations ranged from 0.81 to 0.94 for colour junctions and from 0.78 to 0.98 for chromosome fragments of chromosomes 18 and 2 respectively. Thermal neutron irradiation with or without gadolinium induced more chromosome aberrations than gamma-ray irradiation. After correction for chromosome length it appeared that both chromosomes were equally sensitive to radiation. It is concluded that Gd-NCT at a non-toxic concentration of gadolinium is effective in inducing cell death and chromosome aberrations in in vitro cell cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call