Abstract

Gadolinia-doped ceria (GDC) films were prepared by RF reactive magnetron sputtering from a Gd-10 at.% Ce alloy target in reactive O 2/Ar gas mixtures and annealed at 700 °C for 2 h. Material characteristics and chemical compositions of GDC films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Electrical behaviors were measured by AC impedance in the range of 500–700 °C at OCV for air condition. The microstructure of GDC films was found to be an assembly of columnar crystallites with a cubic fluorite structure. The total conductivity of 700 °C-annealed GDC (GDC-1) with the obtained composition of (Ce 0.911Gd 0.089)O 1.938 was higher than that of bulk yttria-stabilized zirconia (YSZ), but smaller than bulk GDC. The governing mechanism of conduction of sputtered-GDC electrolyte films was mainly governed by a grain boundary process, which resulted in a blocking effect and the lower conductivity of thin films than that of bulk GDC samples. Our results suggested that sputtered-GDC films with a comparable conductivity can be used as solid electrolyte layers for a solid oxide fuel cell (SOFC) system as compared to the well-known YSZ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.