Abstract

Sleep staging is a precondition for the diagnosis and treatment of sleep disorders. However, how to fully exploit the relationship between spatial features of the brain and sleep stages is an important task. Many current classical algorithms only extract the characteristic information of the brain in the Euclidean space without considering other spatial structures. In this study, a sleep staging network named GAC-SleepNet is designed. GAC-SleepNet uses the characteristic information in the dual structure of the graph structure and the Euclidean structure for the classification of sleep stages. In the graph structure, this study uses a graph convolutional neural network to learn the deep features of each sleep stage and converts the features in the topological structure into feature vectors by a multilayer perceptron. In the Euclidean structure, this study uses convolutional neural networks to learn the temporal features of sleep information and combine attention mechanism to portray the connection between different sleep periods and EEG signals, while enhancing the description of global features to avoid local optima. In this study, the performance of the proposed network is evaluated on two public datasets. The experimental results show that the dual spatial structure captures more adequate and comprehensive information about sleep features and shows advancement in terms of different evaluation metrics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call