Abstract
This paper introduces a novel Gabor-based supervised locality preserving projection (GSLPP) method for face recognition. Locality preserving projection (LPP) is a recently proposed method for unsupervised linear dimensionality reduction. LPP seeks to preserve the local structure which is usually more significant than the global structure preserved by principal component analysis (PCA) and linear discriminant analysis (LDA). In this paper, we investigate its extension, called supervised locality preserving projection (SLPP), using class labels of data points to enhance its discriminant power in their mapping into a low-dimensional space. The GSLPP method, which is robust to variations of illumination and facial expression, applies the SLPP to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. We performed comparative experiments of various face recognition schemes, including the proposed GSLPP method, PCA method, LDA method, LPP method, the combination of Gabor and PCA method (GPCA) and the combination of Gabor and LDA method (GLDA). Experimental results on AR database and CMU PIE database show superior of the novel GSLPP method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.