Abstract

Though AdaBoost has been widely used for feature selection and classifier learning, many of the selected features, or weak classifiers, are redundant. By incorporating mutual information into AdaBoost, we propose an improved boosting algorithm in this paper. The proposed method fully examines the redundancy between candidate classifiers and selected classifiers. The classifiers thus selected are both accurate and non-redundant. Experimental results show that the strong classifier learned using the proposed algorithm achieves a lower training error rate than AdaBoost. The proposed algorithm has also been applied to select discriminative Gabor features for face recognition. Even with the simple correlation distance measure and 1-NN classifier, the selected Gabor features achieve quite high recognition accuracy on the FERET database, where both expression and illumination variance exists. When only 140 features are used, the selected features achieve as high as 95.5% accuracy, which is about 2.5% higher than that of features selected by AdaBoost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.