Abstract
The nonlocal means (NLM) filter has distinct advantages over traditional image denoising techniques. However, in spite of its simplicity, the pixel value-based self-similarity measure used by the NLM filter is intrinsically less robust when applied to images with non-stationary contents. In this paper, we use Gabor-based texture features to measure the self-similarity, and thus propose the Gabor feature based NLM (GFNLM) filter for textured image denoising. This filter recovers noise-corrupted images by replacing each pixel value with the weighted sum of pixel values in its search window, where each weight is defined based on the Gabor-based texture similarity measure. The GFNLM filter has been compared to the classical NLM filter and four other state-of-the-art image denoising algorithms in textured images degraded by additive Gaussian noise. Our results show that the proposed GFNLM filter can denoise textured images more effectively and robustly while preserving the texture information.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.